Question

A particle of mass m is acted upon by a force F given by the empirical law F = $\frac{\kappa}{t^2}$ v(t). If this law is to be tested experimentally by observing the motion starting from rest, the best way is to plot:

A
$$\log v(t)$$
 against $\frac{1}{t}$

B $v(t)$ against t^2

B
$$v(t)$$
 against t^2
C $\log v(t)$ against $\frac{1}{t^2}$

B
$$v(t)$$
 against t^2
C $\log v(t)$ against $\frac{1}{t^2}$

log v(t) against t

Solution

Correct of
$$F = \frac{R}{2}v(t)$$

$$F = \frac{R}{t^2}v(t)$$

$$F = \frac{R}{t^2}v(t)$$

$$F = \frac{\kappa}{t^2} v(t)$$

$$\Rightarrow m \frac{dv}{dt} = \frac{R}{v(t)} v(t)$$

$$\Rightarrow m\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{R}{t^2}v(t)$$

$$\Rightarrow \int \frac{\mathrm{d}\mathbf{v}}{\mathbf{v}} = \int \frac{\mathrm{R}\mathrm{d}\mathbf{t}}{\mathrm{m}\mathbf{t}^2}$$

$$\Rightarrow \int \frac{dV}{V} = \int R$$

$$\ln v = -\frac{R}{mt}$$

$$\Rightarrow \ln v \propto \frac{1}{t}$$